Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl–Ishlinskii Model
نویسندگان
چکیده
Piezoelectric, magnetostrictive, and shape memory alloy actuators are gaining importance in high-frequency precision applications constrained by space. Their intrinsic hysteretic behavior makes control difficult. The Prandtl–Ishlinskii (PI) operator can model hysteresis well, albeit a major inadequacy: the inverse operator does not exist when the hysteretic curve gradient is not positive definite, i.e., ill condition occurs when slope is negative. An inevitable tradeoff between modeling accuracy and inversion stability exists. The hysteretic modeling improves with increasing number of play operators. But as the piecewise continuous interval of each operator reduces, the model tends to be ill-conditioned, especially at the turning points. Similar ill-conditioned situation arises when these actuators move heavy loads or operate at high frequency. This paper proposes an extended PI operator to map hysteresis to a domain where inversion is well behaved. The inverse weights are then evaluated to determine the inverse hysteresis model for the feedforward controller. For illustration purpose, a piezoelectric actuator is used.
منابع مشابه
Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be...
متن کاملMotion Control of Smart Material Based Actuators : Modeling , Controller De - sign and Experimental Evaluation
Motion Control of Smart Material Based Actuators: Modeling, Controller Design and Experimental Evaluation Sining Liu, Ph.D. Concordia University, 2013 Smart material based actuators, such as piezoelectric, magnetostrictive, and shape memory alloy actuators, are known to exhibit hysteresis e ects. When the smart actuators are preceded with plants, such non-smooth nonlinearities usually lead to p...
متن کاملH∞ control for a smart micro-positioning system with an analytical model for the output of the inverse compensation
An experimental study was carried out on a piezoelectric actuator in order to explore the benefits of a mathematical formula [1], that describes the output of the inverse compensation when an inverse Prandtl-Ishlinskii hysteresis model is applied as a feedforward compensator. The inverse Prandtl-Ishlinskii was first formulated and applied for compensation of hysteresis nonlinearities of a piezo...
متن کاملHysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation
In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...
متن کاملAccuracy Evaluation of Generalized Prandtl-Ishlinskii Model in Characterizing Asymmetric Saturated Hysteresis Nonlinearity Behavior of Shape Memory Alloy Actuators
Prandtl-Ishlinskii (P-I) model is one of the powerful operator-based phenomenological models which is used in modeling complex hysteretic nonlinear behavior in piezoelectric, piezoceramic, magnetostrictive and shape memory alloy actuators. The most appealing and unique aspect of the Prandtl-Ishlinskii model comes back to this fact that this model is analytically invertible and therefore could b...
متن کامل